1,022 research outputs found

    Commodity Food Prices: Review and Empirics

    Get PDF
    The present paper provides a literature review of studies examining the potential causes and consequences of recent surges in food and agricultural commodity prices. Furthermore, this paper uses the structural trend methodology proposed by Koopman et al. (2009) to analyze movements in the IMF monthly commodity food price index for the period 1992(11)–2012(10) and to provide forecasts for the period 2012(11)–2014(12). The empirical results indicate that commodity food prices present seasonality and cyclicality with the longest periodicity of two years. The empirical findings identify certain structural breaks in commodity food price series as well as outliers. These structural breaks seem to capture the trend component of the price series well, while the outliers take account of temporal effects, that is, short-lived spikes. Finally, the presented forecasts show high and volatile commodity food prices

    Analysis of an Ultra-precision Positioning System and Parametrization of Its Structural Model for Error Compensation

    Get PDF
    Conventional compensation of position errors of machine tools relies only on measured values. Due to this principle it is not always possible to compensate the errors in time, especially dynamic ones. Moreover, the relevant control variables cannot always be measured directly. Thus, this approach proves to be insufficient for high precision applications. In this context, a model-based error prediction allows for minimal position errors. However, ultra-precision applications set high demands for the models' accuracy. This paper presents the design of an accurate and real time-capable structural model of an ultra-precision positioning system. The modeling method for the developed ultra-precision demonstrator is shown and the initial parameter identification is presented. © 2017 The Authors. Published by Elsevier B.V.DFG/FOR/184

    The impact of nandrolone decanoate in the osseointegration of dental implants in a rabbit model: Histological and micro-radiographic results

    Get PDF
    Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients

    Dynamics of cooling viscoplastic domes

    Full text link

    Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study

    Get PDF
    The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1β and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1β and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal−Wallis analysis of variance with Dunn’s multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences (P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1β determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface

    The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models

    No full text
    The present study compares simulations of the 2009 sudden stratospheric warming (SSW) from four different whole atmosphere models. The models included in the comparison are the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy, Hamburg Model of the Neutral and Ionized Atmosphere, Whole Atmosphere Model, and Whole Atmosphere Community Climate Model Extended version (WACCM-X). The comparison focuses on the zonal mean, planetary wave, and tidal variability in the middle and upper atmosphere during the 2009 SSW. The model simulations are constrained in the lower atmosphere, and the simulated zonal mean and planetary wave variability is thus similar up to approximate to 1 hPa (50 km). With the exception of WACCM-X, which is constrained up to 0.002 hPa (92 km), the models are unconstrained at higher altitudes leading to considerable divergence among the model simulations in the mesosphere and thermosphere. We attribute the differences at higher altitudes to be primarily due to different gravity wave drag parameterizations. In the mesosphere and lower thermosphere, we find both similarities and differences among the model simulated migrating and nonmigrating tides. The migrating diurnal tide (DW1) is similar in all of the model simulations. The model simulations reveal similar temporal evolution of the amplitude and phase of the migrating semidiurnal tide (SW2); however, the absolute SW2 amplitudes are significantly different. Through comparison of the zonal mean, planetary wave, and tidal variability during the 2009 SSW, the results of the present study provide insight into aspects of the middle and upper atmosphere variability that are considered to be robust features, as well as aspects that should be considered with significant uncertainty

    An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models

    Get PDF
    Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size
    • …
    corecore